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Math 3B — Week 1

Integrals by Definition For each of the following, write the integral as a Riemann sum or
determine what integral the Riemann sum is describing.

(a)

∫ π

0
x2 tan(x) dx

(b)

∫ 2

1
x2 + x3 dx

(c)

∫ 4

2

(
x+ x2

)2
dx

(d) lim
n→∞

n∑
i=1

2

n

(
3 −

(
5 +

2i

n

)2
)

(e) lim
n→∞

n∑
i=1

ei/n

n+ i

(f) lim
n→∞

n∑
i=1

−
5 sin

(
−5i
n

)
n

(a) Since a = 0 and b = π, we can say

∆x =
b− a

n
=
π

n
.

Since f(x) = x2 tan(x), we have

f(xi) = f(a+ i∆x) = f

(
0 +

iπ

n

)
=

(
iπ

n

)2

tan

(
iπ

n

)
.

This gives us a Riemann sum∫ π

0
x2 tan(x) dx = lim

n→∞

n∑
i=1

π

n

(
iπ

n

)2

tan

(
iπ

n

)

= lim
n→∞

n∑
i=1

i2π3 tan
(
iπ
n

)
n3

.

Note the simplification at the end is not necessary. However, it may be helpful to you to
simplify Riemann sums so that when you have to go backwards, simplified expressions look
more familiar!

(b) Once again, we have a = 1, b = 2, and f(x) = x2 + x3, so we find

∆x =
1

n
,

f(xi) =

(
1 +

i

n

)2

+

(
1 +

i

n

)3

,

so ∫ 2

1
x2 + x3 dx = lim

n→∞

n∑
i=1

1

n

[(
1 +

i

n

)2

+

(
1 +

i

n

)3
]
.
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(c) And again, we have a = 2, b = 4, f(x) = (x+ x2)2, so

∆x =
2

n
,

f(xi) =

(
2 +

2i

n
+

(
2 +

2i

n

)2
)2

,

and ∫ 4

2

(
x+ x2

)2
dx = lim

n→∞

n∑
i=1

2

n

(
2 +

2i

n
+

(
2 +

2i

n

)2
)2

.

(d) Going in this direction is less straightforward than in the previous three questions. Luckily,
the expression in this part is left in a way that makes it relatively easy to read off the various
parts. We know we want to write the given Riemann sum as

lim
n→∞

n∑
i=1

∆xf(xi),

where ∆x = (b− a)/n and xi = a+ i∆x. A nice candidate to take the place of ∆x for us is
2/n (why?). If we take ∆x = 2/n, then we have

xi = a+ i∆x = a+ i
2

n
.

Looking back at the given expression, we notice that the 5 + 2i/n already looks like this, so
let’s take that as our xi. Thus far, we have found

∆x =
2

n
=
b− a

n
,

xi = 5 +
2i

n
= a+ i∆x.

From ∆x, we find that b − a = 2. From xi, we find a = 5. Putting these together, we find
that b = 7. We now have the bounds of our integral! To find our function f(x), we need
only look at everything that is left in our Riemann sum. Since the summands are supposed
to look like ∆x · f(xi) and we already said ∆x = 2/n, we are left with

f(xi) = 3 −
(

5 +
2i

n

)2

.

But we know that 5 + 2i/n is our xi, so we conclude that

f(x) = 3 − x2

(verify that using this f gives us the correct f(xi)). We have now found all the necessary
parts (a, b, and f), so we can say

lim
n→∞

n∑
i=1

2

n

(
3 −

(
5 +

2i

n

)2
)

=

∫ 7

5
3 − x2 dx.
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(e) This problem is trickier than the previous one. We’re going to end up having to rewrite the
given expression into a form that looks more like what we want before figuring out what
integral it represents. The first thing that might strike us about this integral is the n + i
in the denominator. This is a little strange since when we take f(xi), we are expecting i/n
sorts of terms. This feeling becomes stronger when we see the i/n in the numerator. Let
us suppose that f(x) has something to do with ex. When we take f(xi), we expect to find
something that looks like ea+i∆x. In our case, we conjecture that

xi =
i

n

so that a = 0 and ∆x = 1/n. Since a = 0 and b − a = 1, we conclude that b = 1. Now all
that’s left is to find f(x). To do so, recall that we want the Riemann sum to be written as

lim
n→∞

n∑
i=1

∆x · f(xi).

Well, we know ∆x = 1/n, so let us factor out an n from the denominator so we can write a
1/n in front of the rest of the expression:

lim
n→∞

n∑
i=1

1

n
· ei/n

1 + i
n

.

Now since ∆x = 1/n, we must have

f(xi) =
ei/n

1 + 1
n

.

This is nice because we already said that xi = i/n, so we just have

f(x) =
ex

1 + x
.

Finally, we may say

lim
n→∞

n∑
i=1

ei/n

n+ i
=

∫ 1

0

ex

1 + x
dx.

(f) This last problem is actually not as bad as the previous problem. It is not too hard to see
that

lim
n→∞

n∑
i=1

−
5 sin

(
−5i
n

)
n

= lim
n→∞

n∑
i=1

− 5

n
sin

(
−5i

n

)
.

Now, we can just take

∆x = − 5

n
,

xi = −5i

n

to find a = 0 and b − a = −5, so b = −5. Our function is the only thing that’s left, namely
sin(x). This leaves us with

lim
n→∞

n∑
i=1

−
5 sin

(
−5i
n

)
n

=

∫ −5

0
sin(x) dx.
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This is weird...the upper integration bound is smaller than the lower...more on that in the
next part!
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Integrals as Areas Evaluate each of the following integrals geometrically.

(a)

∫ 1

0
x dx

(b)

∫ 1

0
1 dx

(c)

∫ 1

0
−1 dx

(d)

∫ 0

1
1 dx

(e)

∫ 0

1
−1 dx

(f)

∫ 2π

0
sin(x) dx

(a) We are just looking for the following area:

1

f(x) = x
.

Since the region is a triangle with width 1 and height 1, we conclude that∫ 1

0
x dx =

1

2
(1)(1) =

1

2
.

(b) This one is even easier.

1

f(x) = 1

Since the region is a square with width 1 and height 1, we conclude that∫ 1

0
1 dx = 1(1) = 1.

(c) This is where the integrals begin to get interesting!

1

f(x) = 1
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Of course, the shaded region still has an area of 1, but integrals calculate signed area. Since
the area is below the x-axis (or equivalently since f(x) is negative), we have a “negative area”.
This gives us ∫ 1

0
−1 dx = −1.

(d) This integral is strange. We’re looking at the same region as in part (b), but this time, we’re
integrating backwards! Instead of our upper bound being greater than our lower bound,
our upper bound is smaller than our lower bound! Integrating “backwards” also produces a
“negative area”, so we have ∫ 0

1
1 dx = −1.

In general, it is true that ∫ b

a
f(x) dx = −

∫ a

b
f(x) dx.

(e) Now we’re putting all the strange things together! We’re integrating a negative area back-
wards, so the negatives cancel out and we are left with∫ 0

1
−1 dx = −(−1) = 1.

(f) This one is not a super simple function like the previous ones, but we can still draw it and
see what happens.

f(x) = sinx
x

y

1 2 3 4 5 6

−1

0

1

Now, we can’t be sure without actually calculating it, but it seems like the positive area and
the negative area are roughly the same! Indeed, if we actually compute the integral, we will
see that ∫ 2π

0
sin(x) dx = 0.
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